Number Theory An Introduction To Mathematics Universitext.php Book PDF, EPUB Download & Read Online Free

Number Theory
Author: W.A. Coppel
Publisher: Springer Science & Business Media
ISBN: 0387894853
Pages: 610
Year: 2009-08-12
View: 458
Read: 1254
Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.
An Introduction to Ergodic Theory
Author: Peter Walters
Publisher: Springer Science & Business Media
ISBN: 0387951520
Pages: 250
Year: 2000-10-06
View: 399
Read: 694
This text provides an introduction to ergodic theory suitable for readers knowing basic measure theory. The mathematical prerequisites are summarized in Chapter 0. It is hoped the reader will be ready to tackle research papers after reading the book. The first part of the text is concerned with measure-preserving transformations of probability spaces; recurrence properties, mixing properties, the Birkhoff ergodic theorem, isomorphism and spectral isomorphism, and entropy theory are discussed. Some examples are described and are studied in detail when new properties are presented. The second part of the text focuses on the ergodic theory of continuous transformations of compact metrizable spaces. The family of invariant probability measures for such a transformation is studied and related to properties of the transformation such as topological traitivity, minimality, the size of the non-wandering set, and existence of periodic points. Topological entropy is introduced and related to measure-theoretic entropy. Topological pressure and equilibrium states are discussed, and a proof is given of the variational principle that relates pressure to measure-theoretic entropies. Several examples are studied in detail. The final chapter outlines significant results and some applications of ergodic theory to other branches of mathematics.
A Course on Mathematical Logic
Author: Shashi Mohan Srivastava
Publisher: Springer Science & Business Media
ISBN: 1461457467
Pages: 198
Year: 2013-01-16
View: 966
Read: 286
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.
Rational Points on Elliptic Curves
Author: Joseph H. Silverman, John T. Tate
Publisher: Springer
ISBN: 3319185888
Pages: 332
Year: 2015-06-02
View: 823
Read: 563
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This volume stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of Rational Points on Elliptic Curves. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation of the group of rational points, the Thue–Siegel theorem on the finiteness of the set of integer points, theorems on counting points with coordinates in finite fields, Lenstra's elliptic curve factorization algorithm, and a discussion of complex multiplication and the Galois representations associated to torsion points. Additional topics new to the second edition include an introduction to elliptic curve cryptography and a brief discussion of the stunning proof of Fermat's Last Theorem by Wiles et al. via the use of elliptic curves.
Introduction to the Mathematics of Finance
Author: Ruth J. Williams
Publisher: American Mathematical Soc.
ISBN: 0821839039
Pages: 150
Year: 2006
View: 631
Read: 899
The modern subject of mathematical finance has undergone considerable development, both in theory and practice, since the seminal work of Black and Scholes appeared a third of a century ago. This book is intended as an introduction to some elements of the theory that will enable students and researchers to go on to read more advanced texts and research papers. The book begins with the development of the basic ideas of hedging and pricing of European and American derivatives in the discrete (i.e., discrete time and discrete state) setting of binomial tree models. Then a general discrete finite market model is introduced, and the fundamental theorems of asset pricing are proved in this setting. Tools from probability such as conditional expectation, filtration, (super)martingale, equivalent martingale measure, and martingale representation are all used first in this simple discrete framework. This provides a bridge to the continuous (time and state) setting, which requires the additional concepts of Brownian motion and stochastic calculus. The simplest model in the continuous setting is the famous Black-Scholes model, for which pricing and hedging of European and American derivatives are developed. The book concludes with a description of the fundamental theorems for a continuous market model that generalizes the simple Black-Scholes model in several directions.
An Introduction to the Theory of Graph Spectra
Author: Dragoš Cvetković, Peter Rowlinson, Slobodan Simić
Publisher: Cambridge University Press
ISBN: 0521134080
Pages: 378
Year: 2009-10-15
View: 1139
Read: 675
This introductory text explores the theory of graph spectra: a topic with applications across a wide range of subjects, including computer science, quantum chemistry and electrical engineering. The spectra examined here are those of the adjacency matrix, the Seidel matrix, the Laplacian, the normalized Laplacian and the signless Laplacian of a finite simple graph. The underlying theme of the book is the relation between the eigenvalues and structure of a graph. Designed as an introductory text for graduate students, or anyone using the theory of graph spectra, this self-contained treatment assumes only a little knowledge of graph theory and linear algebra. The authors include many new developments in the field which arise as a result of rapidly expanding interest in the area. Exercises, spectral data and proofs of required results are also provided. The end-of-chapter notes serve as a practical guide to the extensive bibliography of over 500 items.
Understanding Machine Learning
Author: Shai Shalev-Shwartz, Shai Ben-David
Publisher: Cambridge University Press
ISBN: 1107057132
Pages: 409
Year: 2014-05-19
View: 1226
Read: 457
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Analysis
Author: Elliott H. Lieb, Michael Loss
Publisher: American Mathematical Soc.
ISBN: 0821827839
Pages: 346
Year: 2001
View: 713
Read: 969
This is an excellent textbook on analysis and it has several unique features: Proofs of heat kernel estimates, the Nash inequality and the logarithmic Sobolev inequality are topics that are seldom treated on the level of a textbook. Best constants in several inequalities, such as Young's inequality and the logarithmic Sobolev inequality, are also included. A thorough treatment of rearrangement inequalities and competing symmetries appears in book form for the first time. There is an extensive treatment of potential theory and its applications to quantum mechanics, which, again, is unique at this level. Uniform convexity of $L^p$ space is treated very carefully. The presentation of this important subject is highly unusual for a textbook. All the proofs provide deep insights into the theorems. This book sets a new standard for a graduate textbook in analysis. --Shing-Tung Yau, Harvard University For some number of years, Rudin's ``Real and Complex'', and a few other analysis books, served as the canonical choice for the book to use, and to teach from, in a first year grad analysis course. Lieb-Loss offers a refreshing alternative: It begins with a down-to-earth intro to measure theory, $L^p$ and all that ... It aims at a wide range of essential applications, such as the Fourier transform, and series, inequalities, distributions, and Sobolev spaces--PDE, potential theory, calculus of variations, and math physics (Schrodinger's equation, the hydrogen atom, Thomas-Fermi theory ... to mention a few). The book should work equally well in a one-, or in a two-semester course. The first half of the book covers the basics, and the rest will be great for students to have, regardless of whether or not it gets to be included in a course. --Palle E. T. Jorgensen, University of Iowa
Introduction to Group Theory with Applications
Author: Gerald Burns
Publisher: Academic Press
ISBN: 1483191494
Pages: 446
Year: 2014-05-10
View: 753
Read: 784
Introduction to Group Theory with Applications covers the basic principles, concepts, mathematical proofs, and applications of group theory. This book is divided into 13 chapters and begins with discussions of the elementary topics related to the subject, including symmetry operations and group concepts. The succeeding chapters deal with the properties of matrix representations of finite groups, the vibrations of molecular and crystals, vibrational wave function, selection rules, and molecular approximations. These topics are followed by reviews of the basic of quantum mechanics, crystal field theory, atomic physics, hybrid functions, and molecular orbital theory. The last chapters describe the symmetry of crystal lattices, the band theory of solids, and the full rotation group. This book will be of value to undergraduate mathematics and physics students.
An Introduction to Number Theory
Author: Harold M. Stark
Publisher: Mit Press
ISBN: 0262690608
Pages: 347
Year: 1978-01-01
View: 1194
Read: 368
The majority of students who take courses in number theory are mathematics majors who will not become number theorists. Many of them will, however, teach mathematics at the high school or junior college level, and this book is intended for those students learning to teach, in addition to a careful presentation of the standard material usually taught in a first course in elementary number theory, this book includes a chapter on quadratic fields which the author has designed to make students think about some of the "obvious" concepts they have taken for granted earlier. The book also includes a large number of exercises, many of which are nonstandard.
Complex Analysis
Author: Eberhard Freitag, Rolf Busam
Publisher: Springer Science & Business Media
ISBN: 3540939830
Pages: 532
Year: 2009-04-28
View: 182
Read: 513
All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included
Representation Theory of Finite Groups
Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Pages: 157
Year: 2011-10-23
View: 1218
Read: 1164
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.
Introduction to Modern Set Theory
Author: Judith Roitman
Publisher: John Wiley & Sons
ISBN: 0471635197
Pages: 156
Year: 1990-01-16
View: 385
Read: 651
This is modern set theory from the ground up--from partial orderings and well-ordered sets to models, infinite cobinatorics and large cardinals. The approach is unique, providing rigorous treatment of basic set-theoretic methods, while integrating advanced material such as independence results, throughout. The presentation incorporates much interesting historical material and no background in mathematical logic is assumed. Treatment is self-contained, featuring theorem proofs supported by diagrams, examples and exercises. Includes applications of set theory to other branches of mathematics.
Algebraic Geometry
Author: Ulrich Görtz, Torsten Wedhorn
Publisher: Springer Science & Business Media
ISBN: 3834897221
Pages: 615
Year: 2010-08-09
View: 240
Read: 829
This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
Probability Theory
Author: Achim Klenke
Publisher: Springer Science & Business Media
ISBN: 1447153618
Pages: 638
Year: 2013-08-30
View: 784
Read: 530
This second edition of the popular textbook contains a comprehensive course in modern probability theory, covering a wide variety of topics which are not usually found in introductory textbooks, including: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.