Principles Of Electron Optics Applied Geometrical Optics 2.php Book PDF, EPUB Download & Read Online Free

Particles and Waves in Electron Optics and Microscopy
Author:
Publisher: Academic Press
ISBN: 0128052309
Pages: 358
Year: 2016-05-27
View: 359
Read: 1259
Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contains contributions from leading authorities on the subject matter Informs and updates all the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing
Principles of Electron Optics
Author: Peter W. Hawkes, Erwin Kasper
Publisher: Academic Press
ISBN: 0080962432
Pages: 1188
Year: 2012-12-02
View: 234
Read: 746
This is a complete handbook and reference volume which covers everything that one needs to know about electron optics. It is a comprehensive coverage of theoretical background and modern computing methods. It contains a detailed and unique account of numerical methods and an extensive bibliography.
Geometrical Charged-Particle Optics
Author: Harald Rose
Publisher: Springer
ISBN: 3642321194
Pages: 507
Year: 2013-02-02
View: 1145
Read: 1116
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton’s principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern-Gerlach effect is revisited for atomic and free electrons.
Reflection Electron Microscopy and Spectroscopy for Surface Analysis
Author: Zhong Lin Wang
Publisher: Cambridge University Press
ISBN: 0521017955
Pages: 460
Year: 2005-08-22
View: 1118
Read: 1103
This book is a comprehensive review of the theories, techniques and applications of reflection electron microscopy (REM), reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS). The book is divided into three parts: diffraction, imaging and spectroscopy. The text is written to combine basic techniques with special applications, theories with experiments, and the basic physics with materials science, so that a full picture of RHEED and REM emerges. An entirely self-contained study, the book contains much invaluable reference material, including FORTRAN source codes for calculating crystal structures data and electron energy-loss spectra in different scattering geometries. This and many other features makes the book an important and timely addition to the materials science literature for researchers and graduate students in physics and materials science.
All-Russian Seminar on Problems of Theoretical and Applied Electron Optics
Author: Anatoly M. Filachev, Inna S. Gaidoukova, Russia (Federation). Ministerstvo promyshlennosti, nauki i tekhnologiĭ, Society of Photo-optical Instrumentation Engineers. Russian Chapter
Publisher: Society of Photo Optical
ISBN: 0819448265
Pages: 176
Year: 2003
View: 379
Read: 1316

Optics in Our Time
Author: Mohammad D. Al-Amri, Mohamed El-Gomati, M. Suhail Zubairy
Publisher: Springer
ISBN: 3319319035
Pages: 504
Year: 2016-12-12
View: 181
Read: 155
Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action. “/p>
Astronomy Methods
Author: Hale Bradt
Publisher: Cambridge University Press
ISBN: 0521535514
Pages: 433
Year: 2004
View: 1287
Read: 766
Astronomy Methods is an introduction to basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.
Wicking in Porous Materials
Author: Reza Masoodi, Krishna M. Pillai
Publisher: CRC Press
ISBN: 1439874328
Pages: 380
Year: 2012-10-26
View: 309
Read: 525
A comprehensive presentation of wicking models developed in academia and industry, Wicking in Porous Materials: Traditional and Modern Modeling Approaches contains some of the most important approaches and methods available, from the traditional Washburn-type models to the latest Lattice-Boltzmann approaches developed during the last few years. It provides a sound conceptual framework for learning the science behind different mathematical models while at the same time being aware of the practical issues of model validation as well as measurement of important properties and parameters associated with various models. Top experts in the field reveal the secrets of their wicking models. The chapters cover the following topics: Wetting and wettability Darcy’s law for single- and multi-phase flows Traditional capillary models, such as the Washburn-equation based approaches Unsaturated-flow based methodologies (Richard’s Equation) Sharp-front (plug-flow) type approaches using Darcy’s law Pore network models for wicking after including various micro-scale fluid-flow phenomena Studying the effect of evaporation on wicking using pore network models Fractal-based methods Modeling methods based on mixture theory Lattice-Boltzmann method for modeling wicking in small scales Modeling wicking in swelling and non-rigid porous media This extensive look at the modeling of porous media compares various methods and treats traditional topics as well as modern technologies. It emphasizes experimental validation of modeling approaches as well as experimental determination of model parameters. Matching models to particular media, the book provides guidance on what models to use and how to use them.
Quantum Theory of the Electron Liquid
Author: Gabriele Giuliani, Giovanni Vignale
Publisher: Cambridge University Press
ISBN: 0521821126
Pages: 777
Year: 2005-03-31
View: 727
Read: 609
Modern electronic devices and novel materials often derive their extraordinary properties from the intriguing, complex behavior of large numbers of electrons forming what is known as an electron liquid. This book provides an in-depth introduction to the physics of the interacting electron liquid in a broad variety of systems, including metals, semiconductors, artificial nano-structures, atoms and molecules. One, two and three dimensional systems are treated separately and in parallel. Different phases of the electron liquid, from the Landau Fermi liquid to the Wigner crystal, from the Luttinger liquid to the quantum Hall liquid are extensively discussed. Both static and time-dependent density functional theory are presented in detail. Although the emphasis is on the development of the basic physical ideas and on a critical discussion of the most useful approximations, the formal derivation of the results is highly detailed and based on the simplest, most direct methods.
Elastic and Inelastic Scattering in Electron Diffraction and Imaging
Author: Zhong-lin Wang
Publisher: Springer Science & Business Media
ISBN: 1489915796
Pages: 448
Year: 2013-06-29
View: 687
Read: 661
Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.
Encyclopedia of Optical Engineering: Pho-Z, pages 2049-3050
Author: Ronald G. Driggers
Publisher: CRC Press
ISBN: 0824742524
Pages: 3104
Year: 2003
View: 710
Read: 1129
From Astronomy to X-ray optics, this encyclopedia contains more than 230 entries which examine technological advances and perspectives from distinguished professionals around the globe. It covers topics such as digital image enhancement, biological modelling, biomedical spectroscopy and ocean optics for coverage of applications in this field.
Neutron and X-ray Optics
Author: Jay Theodore Cremer, Jr.
Publisher: Newnes
ISBN: 0124071597
Pages: 1124
Year: 2013-02-18
View: 877
Read: 857
Covering a wide range of topics related to neutron and x-ray optics, this book explores the aspects of neutron and x-ray optics and their associated background and applications in a manner accessible to both lower-level students while retaining the detail necessary to advanced students and researchers. It is a self-contained book with detailed mathematical derivations, background, and physical concepts presented in a linear fashion. A wide variety of sources were consulted and condensed to provide detailed derivations and coverage of the topics of neutron and x-ray optics as well as the background material needed to understand the physical and mathematical reasoning directly related or indirectly related to the theory and practice of neutron and x-ray optics. The book is written in a clear and detailed manner, making it easy to follow for a range of readers from undergraduate and graduate science, engineering, and medicine. It will prove beneficial as a standalone reference or as a complement to textbooks. Supplies a historical context of covered topics. Detailed presentation makes information easy to understand for researchers within or outside the field. Incorporates reviews of all relevant literature in one convenient resource.
Theory of Reflection of Electromagnetic and Particle Waves
Author: John Lekner
Publisher: Springer Science & Business Media
ISBN: 9024734185
Pages: 279
Year: 1987-02-28
View: 1246
Read: 385
This book is written for scientists and engineers whose work involves wave reflec tion or transmission. Most of the book is written in the language of electromagnetic theory, but, as the title suggests, many of the results can be applied to particle waves, specifically to those satisfying the Schr6dinger equation. The mathematical connection between electromagnetic s (or TE) waves and quantum particle waves is established in Chapter 1. The main results for s waves are translated into quantum mechanical language in the Appendix. There is also a close analogy between acoustic waves and electromagnetic p (or TM) waves, as shown in Section 1-4. Thus the book, though primarily intended for those working in optics, microwaves and radio, will be of use to physicists, chemists and electrical engineers studying reflection and transmission of particles at potential barriers. The tech niques developed here can also be used by those working in acoustics, ocean ography and seismology. Chapter 1 is recommended for all readers: it introduces reflection phenomena, defines the notation, and previews (in Section 1-6) the contents of the rest of the book. This preview will not be duplicated here. We note only that applied topics do appear: two examples are the important phenomenon of attenuated total reflection in Chapter 8, and the reflectivity of multilayer dielectric mirrors in Chapter 12. The subject matter is restricted to linear classical electrodynamics in non-magnetic media, and the corresponding particle analogues.
Computational Photonics
Author: Marek S. Wartak
Publisher: Cambridge University Press
ISBN: 1139851403
Pages:
Year: 2013-01-10
View: 876
Read: 911
A comprehensive manual on the efficient modeling and analysis of photonic devices through building numerical codes, this book provides graduate students and researchers with the theoretical background and MATLAB programs necessary for them to start their own numerical experiments. Beginning by summarizing topics in optics and electromagnetism, the book discusses optical planar waveguides, linear optical fiber, the propagation of linear pulses, laser diodes, optical amplifiers, optical receivers, finite-difference time-domain method, beam propagation method and some wavelength division devices, solitons, solar cells and metamaterials. Assuming only a basic knowledge of physics and numerical methods, the book is ideal for engineers, physicists and practising scientists. It concentrates on the operating principles of optical devices, as well as the models and numerical methods used to describe them.
Fundamentals of Optics
Author: Francis A. Jenkins, Harvey Elliott White
Publisher: McGrawhill
ISBN: 0070853460
Pages: 746
Year: 1981
View: 999
Read: 816