Support Vector Machines Information Science And Statistics.php Book PDF, EPUB Download & Read Online Free

Support Vector Machines
Author: Ingo Steinwart, Andreas Christmann
Publisher: Springer Science & Business Media
ISBN: 0387772421
Pages: 601
Year: 2008-09-15
View: 974
Read: 209
Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.
Learning with Kernels
Author: Bernhard Schölkopf, Alexander J. Smola
Publisher: MIT Press
ISBN: 0262194759
Pages: 626
Year: 2002-01
View: 1187
Read: 1271
A comprehensive introduction to Support Vector Machines and related kernel methods.
An Introduction to Statistical Learning
Author: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
Publisher: Springer Science & Business Media
ISBN: 1461471389
Pages: 426
Year: 2013-06-24
View: 645
Read: 153
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Modern Multivariate Statistical Techniques
Author: Alan J. Izenman
Publisher: Springer Science & Business Media
ISBN: 0387781897
Pages: 733
Year: 2009-03-02
View: 1101
Read: 519
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Applying Neuroscience to Business Practice
Author: Dos Santos, Manuel Alonso
Publisher: IGI Global
ISBN: 152251029X
Pages: 332
Year: 2016-10-25
View: 1227
Read: 1286
Neuroscience is a multidisciplinary research area that evaluates the structural and organizational function of the nervous system. When applied to business practices, it is possible to investigate how consumers, managers, and marketers makes decisions and how their emotions may play a role in those decisions. Applying Neuroscience to Business Practice provides theoretical frameworks and current empirical research in the field. Highlighting scientific studies and real-world applications on how neuroscience is being utilized in business practices and marketing strategies to benefit organizations, as well as emergent business and management techniques being developed from this research, this book is a pivotal reference source for researchers, managers, and students.
Regularization, Optimization, Kernels, and Support Vector Machines
Author: Johan A.K. Suykens, Marco Signoretto, Andreas Argyriou
Publisher: CRC Press
ISBN: 1482241404
Pages: 525
Year: 2014-10-23
View: 266
Read: 714
Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference: Covers the relationship between support vector machines (SVMs) and the Lasso Discusses multi-layer SVMs Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing Describes graph-based regularization methods for single- and multi-task learning Considers regularized methods for dictionary learning and portfolio selection Addresses non-negative matrix factorization Examines low-rank matrix and tensor-based models Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 1493938436
Pages: 738
Year: 2016-08-23
View: 540
Read: 1110
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
The Nature of Statistical Learning Theory
Author: Vladimir N. Vapnik
Publisher: Springer Science & Business Media
ISBN: 1475724403
Pages: 188
Year: 2013-04-17
View: 503
Read: 1303
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability.
Computational Science and Its Applications - ICCSA 2010
Author: David Taniar, Osvaldo Gervasi, Beniamino Murgante, Eric Pardede, Bernady O. Apduhan
Publisher: Springer Science & Business Media
ISBN: 3642121888
Pages: 540
Year: 2010-03-16
View: 1277
Read: 717
The four-volume set LNCS 6016 - 6019 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2010, held in Fukuoka, Japan, in March 2010. The four volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: computational methods, algorithms and scientific application, high performance computing and networks, geometric modelling, graphics and visualization, advanced and emerging applications, and information systems and technologies. Moreover, submissions from more than 30 special sessions and workshops contribute to this publication. These cover These cover topics such as geographical analysis, urban modeling, spatial statistics, wireless and ad hoc networking, logical, scientific and computational aspects of pulse phenomena in transitions, high-performance computing and information visualization, sensor network and its applications, molecular simulations structures and processes, collective evolutionary systems, software engineering processes and applications, molecular simulations structures and processes, internet communication security, security and privacy in pervasive computing environments, and mobile communications.
Information Science and Applications (ICISA) 2016
Author: Kuinam J. Kim, Nikolai Joukov
Publisher: Springer
ISBN: 9811005575
Pages: 1505
Year: 2016-02-15
View: 1249
Read: 576
This book contains selected papers from the 7th International Conference on Information Science and Applications (ICISA 2016) and provides a snapshot of the latest issues encountered in technical convergence and convergences of security technology. It explores how information science is core to most current research, industrial and commercial activities and consists of contributions covering topics including Ubiquitous Computing, Networks and Information Systems, Multimedia and Visualization, Middleware and Operating Systems, Security and Privacy, Data Mining and Artificial Intelligence, Software Engineering, and Web Technology. The contributions describe the most recent developments in information technology and ideas, applications and problems related to technology convergence, illustrated through case studies, and reviews converging existing security techniques. Through this volume, readers will gain an understanding of the current state-of-the-art information strategies and technologies of convergence security. The intended readers are researchers in academia, industry and other research institutes focusing on information science and technology.
Introduction to Data Mining
Author: Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar
Publisher: Addison-Wesley
ISBN: 0133128903
Pages: 864
Year: 2013
View: 1012
Read: 1263
Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition , gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.
Computer and Information Sciences
Author: Tadeusz Czachórski
Publisher: Springer
ISBN: 3030008401
Pages:
Year:
View: 329
Read: 213

Machine Learning Models and Algorithms for Big Data Classification
Author: Shan Suthaharan
Publisher: Springer
ISBN: 1489976418
Pages: 359
Year: 2015-10-20
View: 775
Read: 1073
This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems. The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.
Handbook of Statistical Analysis and Data Mining Applications
Author: Robert Nisbet, John Elder, Gary Miner
Publisher: Academic Press
ISBN: 0080912036
Pages: 864
Year: 2009-05-14
View: 1240
Read: 834
The Handbook of Statistical Analysis and Data Mining Applications is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers (both academic and industrial) through all stages of data analysis, model building and implementation. The Handbook helps one discern the technical and business problem, understand the strengths and weaknesses of modern data mining algorithms, and employ the right statistical methods for practical application. Use this book to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques, and discusses their application to real problems, in ways accessible and beneficial to practitioners across industries - from science and engineering, to medicine, academia and commerce. This handbook brings together, in a single resource, all the information a beginner will need to understand the tools and issues in data mining to build successful data mining solutions. Written "By Practitioners for Practitioners" Non-technical explanations build understanding without jargon and equations Tutorials in numerous fields of study provide step-by-step instruction on how to use supplied tools to build models Practical advice from successful real-world implementations Includes extensive case studies, examples, MS PowerPoint slides and datasets CD-DVD with valuable fully-working 90-day software included: "Complete Data Miner - QC-Miner - Text Miner" bound with book
All of Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Pages: 442
Year: 2013-12-11
View: 668
Read: 734
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.